If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-5x=15
We move all terms to the left:
3x^2-5x-(15)=0
a = 3; b = -5; c = -15;
Δ = b2-4ac
Δ = -52-4·3·(-15)
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{205}}{2*3}=\frac{5-\sqrt{205}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{205}}{2*3}=\frac{5+\sqrt{205}}{6} $
| 2(x-3)-4=6 | | 4(x-10)=-6(2-2x) | | x/9+4=7x/3-5x/2 | | (x2−4)(x+4)=(x2−4)(2x+1) | | (x2−4)(x+4)=(x2−4)(2x+1 | | 4x=x.9 | | 3a25=15 | | -6=-2x-3-4x+1 | | 2y+(5/2)=(37/2) | | (7x-10)+3x+x=180 | | 2k-5=6.8 | | c^2-c=6 | | 19-7=-3x | | |5x-(2-3x)|=54 | | 6(5x-8)-8(9x-7)=3x-9 | | 7.5x+5=2.5x+10 | | 14v+6=2(57v)-4 | | 7x-10+4x=180 | | -6x-3+2x-1=-11 | | (x+32)=(3x+20) | | (3x+32)=(3x+20) | | 9y-33=-6y-24 | | 194+3x=180 | | 80/6=80/10+80/x | | 1.34=d/2-1.2 | | 1(7x)=5(6x) | | 75+x+(x+52)+(67+x)=180 | | 75+x+(x+52)+(67+x)=18- | | -5×-3y=-4 | | 3n+7=13. | | (4x-1)=(x-10) | | 4(x+5)=42 |